

Self-Efficacy and Learning Resource Selection in the Post-Pandemic Self-Regulated Learner: A Mixed Method Analysis

Jason F. Martin, DVM MS, Colorado State University, Colorado
jfm@colostate.edu

Anatomy educators do not agree on a measure that reliably identifies students at risk for low performance. It has been proposed that learners with high self-efficacy achieve greater academic performance via an increased rate of cadaveric engagement (Burgoon et al., 2012). An earlier study found that "A" students spent a greater percentage of their study time learning from physical specimens (Magee et al., 2015). When traditional instruction was disrupted by the COVID-19 pandemic, high levels of online self-efficacy were correlated with high levels of self-regulated online learning (Ulfatun et al., 2021). As students returned to hands-on learning, they continued to have access to online resources, providing an opportunity to reevaluate the effect of resources on self-efficacy. This mixed-method study analyzed the association between students' self-efficacy and resource preference in a gross anatomy course from a subset of students ($N = 96$) who participated in a series of experimental sessions to evaluate their anatomy learning. A thematic analysis (TA) was performed by two researchers on post-session interviews ($n = 30$). Using the first TA as a guide, a second TA ($n = 83$) of survey question responses was used to generate a framework that included resource preference, utilized learning strategies, and learning disruption adjustments as part of the interaction between self-efficacy and outcomes. A self-efficacy survey was completed at three points during the semester (Alpha = .84, .88, .91). Self-efficacy scores did not statistically change between periods. Low self-efficacy students showed no statistically significant changes in resource use, while high self-efficacy students used resources 4.9 hours more during week 8 vs. 14 ($r = -.58$, $p < .001$). In addition, high self-efficacy students used fewer resources during week 14 vs. 8 ($d = .34$, $p = .002$), focusing their time on their preferred resources ($r = -.31$, $p = .026$). Being 25% shorter than the first three units, unit four served as a disruption measure, during which low self-efficacy students' lecture examination scores decreased by 9% (Test 3: $M = .75$, Test 4: $M = .66$, $d = .52$, $p < .001$), and their laboratory examination scores decreased by 15% (Test 3: $.77$, Test 4: $M = d = .79$, $p < .001$), while high self-efficacy students' lecture test scores decreased by 3% (Test 3: $M = .85$, Test 4: $M = .82$, $d = .012$), and their laboratory test scores eased by 8% (Test 3: $M = .84$, Test 4: $M = .76$, $d = .45$, $p < .001$). At week 8, a positive linear relationship was seen between low self-efficacy students' test scores and time spent the laboratory with a teaching assistant (Lecture Test: $r = .50$, $p = .005$; Laboratory Test: $r = .47$, $p = .009$) and high self-efficacy students without a teaching assistant (Lecture Test: $r = .50$, $p = .005$; Laboratory Test: $r = .47$, $p = .009$). These findings suggest that when working with underperforming students, anatomy educators should consider the students' self-efficacy and the effective use of cadaveric learning to support positive student outcomes.